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Wave-induced oscillations in harbours of constant depth but arbitrary shape in 
the horizontal plane connected to the open-sea are investigated both theoretically 
and experimentally. A theory termed the ' arbitrary-shape harbour ' theory is 
developed. The solution of the Helmholtz equation is formulated as an integral 
equation which is then approximated by a matrix equation. The final solution 
is obtained by equating, at  the harbour entrance, the wave amplitudes and their 
normal derivatives obtained from the solutions for the regions outside and inside 
the harbour. Special solutions using the method of separation of variables for 
the region inside circular and rectangular harbours are also obtained. Experi- 
ments were conducted to verify the theories. Four specific harbours were in- 
vestigated: two circular harbours with 10' and 60" openings respectively, a 
rectangular harbour, and a model of the East and West Basins of Long Beach 
Harbour, California. In each case, the theoretical results agreed well with the 
experimental data. 

1. Introduction 
A natural or an artificial harbour can exhibit frequency- (or period-) dependent 

water surface oscillations when excited by incident waves in a way which is 
similar to the dynamic response of mechanical or acoustical systems when exposed 
to time-varying forces, pressures, or displacements. Such oscillations in harbours 
can cause significant damage to moored ships and adjacent structures as well 
as inducing undesirable currents in harbours. 

Many previous investigators have studied various aspects of the harbour 
resonance probIem. McNown (1 952) investigated the response characteristics 
of a circular harbour of small entrance gap by assuming that the crest of a 
standing wave (antinode) occurred at the entrance when the harbour was in 
resonance. A similar method was applied to rectangular harbours by Kravtchenko 
& McNown (1955). Thus, for resonant motions such a hypotheses led to a 
boundary condition identical to that for a completely closed basin. Therefore 
the wave periods associated with resonant oscillations would be those which 
correspond to the eigenvalues for the free oscillations of a circular (or arectangular) 
basin. This imposed condition at the harbour entrance is unsatisfactory in the 
sense that the slope of the water surface at  the entrance should be part of the 
solution of the problem and should not be imposed in advance. 
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The problem of a rectangular harbour connected directly to the open-sea 
has been investigated by Miles & Munk (1961). This important contribution 
included the effect of the wave radiation from the harbour mouth to the open- 
sea thereby limiting the maximum wave amplitude within the harbour for the 
inviscid case to a finite value even a t  resonance. They considered an arbitrary- 
shape harbour and formulated the problem as an integral equation in terms of a 
Green’s function. Unfortunately, as they have noted, the Green’s function for 
an arbitrary-shape harbour is very difficult to determine. Thus, this general 
formulation was applied to a specialized shape: a rectangular harbour, and it 
was found that a narrowing of the harbour entrance leads not to a reduction in 
harbour surging (oscillation), but to an enhancement. This result was termed by 
them the ‘harbour paradox’. 

Ippen & Goda (1963) also studied the problem of 5t rectangular harbour con- 
nected to the open-sea. In that analysis, the waves radiated from the harbour 
entrance to the open-sea were evaluated using the Fourier transformation method 
while the solution inside the harbour was obtained by the method of separation 
of variables. The complete solution was obtained by matching the average wave 
amplitude at  the harbour entrance obtained from solutions in both regions. Good 
agreement was found between the theory and experiments. 

Wilson, Hendrickson & Kilmer (1 965) studied long wave oscillations in a basin 
of variable depth open at  one end using a finite-difference method where the 
boundary condition at the harbour entrance must be properly assumed. Leen- 
dertsc (1967) has also developed a finite-difference numerical scheme for the 
propagation of long-period waves in an arbitrary-shaped basin given the water 
surface elevations at the open boundary. Recently, Hwang & Tuck (1970) 
developed a method to analyze the problem of wave-induced oscillations in a 
harbour of arbitrary shape and constant depth. Their method of approach is to 
superimpose scattered waves which are caused by the presence of the boundary 
on the standing wave system. The scattered waves are computed using a dis- 
tribution of sources along the coastline and the boundary of the harbour with 
unknown strengths to be determined numerically. The calculation of the source 
strengths along the entire reflecting boundary must be terminated at some dis- 
tance from the entrance. However, for an arbitrary-shape harbour the position 
at  which the calculation of the source strength can be terminated is not obvious 
unless trial solutions are made. 

The present work is to develop a theory for the wave-induced oscillations in 
harbours of arbitrary geometry (with constant depth) by applying Weber’s 
solution of the Helmholtz equation in both the regions inside and outside the 
harbour with the final solution obtained by matching the wave amplitudes and 
their normal derivatives at the entrance. Theories for special-shaped harbours 
are also developed which can be used for analytical checks for the general theory. 
Experiments were performed in the laboratory basin in order to verify the 
theoretical solutions. 
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2. Theoretical analysis 
Assuming an irrotational flow, one can define a velocity potential @ such that 

the fluid particle velocity vector can be expressed as u = VCD. Thus, from the 
continuity equation for an incompressible fluid, Laplace's equation is obtained: 

v .u  = V W  = 0. ( 1 )  

A solution of CD is sought in the following form: 

FIGURE 1. Definition sketch of the co-ordinate system. 

where r~ is the angular frequency defined as 2r/T (2' is the wave period),i = ./ - 1, 
and f(x, y )  is termed the wave function which describes the variation of @ in 
x, y direction. (The co-ordinate system is defined in figure 1 .) Substituting (2) into 
(1) one obtains 

(3) 

If (3) is set to be equal to a constant, say - k2, then the following set of equations 
is obtained: 

The boundary condition at  the bottom and the linearized dynamic free- 
surface condition respectively are : 

aCD(x, t ~ ,  - h; t ) /& = 0, 

T ( 4  y; t )  = Aif(G 9) exp ( --id) = - U/g) (aQ/w,=,, ( 6 b )  

where the depth y is assumed constant, 7 is the displacement of water surface 
from the still water level, A$ is the amplitude at the crest of the incident wave, 
and g is the acceleration of gravity. 
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The function Z(z) which satisfies (4) and (6) can be found as 

A,g cosh k ( h  + z )  
cosh k h  . Z(2) = - 

Thus, the velocity potential 0 becomes: 

Substituting ( 6 b )  and ( 7 )  into the linearized kinematic free surface condition, 
ar/at = (a@/az),=,,, the well known ‘dispersion relation’ for water waves is 
obtained: u2 = gktanh ( k h ) ;  therefore, the arbitrary constant used in (4) and (5) 
is the wave-number k which appears in the dispersion relation and is defined as 
2n/L (L is the wavelength). 

In  order to complete the expression for the velocity potential 0, the main 
problem which remains is to determine the wave function f(x, y )  which satisfies 
(5) (commonly known as the Helmholtz equation) and the boundary condition 
that there is no flow through solid boundaries (such as the coastline and the 
boundary of the harbour) and also the radiation condition which will be discussed 
later. 

In  $2.1 a method for solving the Helmholtz equation ( 5 ) ,  for an arbitrary- 
shape harbour will be presented, thereby allowing one to determine the wave- 
induced oscillations in such a harbour. 

2.1. Arbitrary-shape harbour theory 

The main idea behind the development of the theory of the response of an 
arbitrary-shape harbour to incident waves is as follows: 

(i) The domain of interest shown in figure 2 is divided at  the harbour entrance 
into two regions: the infinite ocean region (region I), and the region bounded by 
the limits of the harbour (region 11). 

(ii) The functionf, is determined in region I in terms of af,/an at the harbour 
entrance; likewise, the function f, is evaluated in region I1 in terms of af,/an 
at the entrance. (Bothf, andf, satisfy (5).) 

(iii) The ‘continuity condition’ at the harbour entrance, i.e. 

f, = f2  and af& = -af2/an, 

is used to solve for the derivative af2/alz (or afJan); thus, the function f, in 
region I1 (inside the harbour) can be evaluated. 

(1) Punction f, inside the hurbour (region 11). By applying Green’s identity 
formula in region I1 and choosing the Hankel function of the first kind and zeroth 
order, H$l’(kr), to be the fundamental solution of the two-dimensional Helmholtz 
equation, (5), the functionf, at  any position x inside the harbour can be expressed 
as (this is referred to as Weber’s solution of the Helmholtz equation, see Baker & 
Copson (1950), Banaugh & Goldsmith (1963), also Lee (1969)) 
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where x0 is the position vector of the boundary point, r is the distance Ix-x0l, 
and n is directed outward and normal to the boundary. The integration indicated 
by (8) is to be performed along the boundary of the harbour travelling in a 
counter-clockwise direction. 

The boundary condition set previously states that af2/an is zero on the solid 
boundary of the harbour, but its value a t  the harbour entrance is unknown. 

Region I (open-sea) 
v % +k% = 0 f' 

Direction of 
integration 

FIGURE 2. Definition sketch of an arbitrary-shape harbour. 

The value offi on the boundary at  this stage of the development is still unknown. 
In order to determine the value of fi on the boundary as a function of af2/an at  the 
harbour entrance, (8) is modified by allowing the field point x to approach a 
boundary point xi (xi ,y t )  from the interior of the harbour (see Sgure 2). If the 
boundary is sectionally smooth the following expression can be obtained (see 
Lee (1 969) for the derivation of this expression and also for the case of a boundary 
with sharp corners). 

a a 
fi(X,.) = - t i j  (f2(x0) [~~l ' (k lx , -xol ) l -~b ' ) (~ lx i -xoI )~  [f2(xo)l)ds(xo) 

+ VZ(Xi)* (9) 
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Rearranging (9) one obtains the following integral equation for the function 
f2(xi) on the boundary of the harbour: 

a a 
f2(Xi) = - 4; 1 (f2(x0) [~~l'(~lxi-"Hb''(~lxi-xol)~ rf2(x0)1)~~(xo). 

(10) 

To solve (10) for the functionf2(xi) an approximate method is proposed. The 
boundary of the harbour is divided into a sufficiently large number of segments 
( N )  and the value off2 (or af2/an) at  each segment is considered constant and 
equal to the value at  the mid-point of each segment. Thus, writing (10) in dis- 
crete form one obtains: 

Equation (1 1) can be rewritten as a matrix equation, 

X = - +i(G,X- GP) ,  (12) 

x = f2(Xi), (i = 1,2, ...) 3); (13a) 

(13b) P=-f2(xj) (j= l , Z ,  ..., N ) ;  

in which the following notation is used: 

a 
an 

i ax a2y a2x ay 
7T as as2 as2 as 

(G ).. = - (-----) As6 (i = 1 , 2 ,  ..., N ) ;  n aa 

(Cqii = [ 1 +;: Fog r?) --0.42278]] As, (i = 1,2,  ..., N ) .  (13f) 
7T 

In  deriving the expression for the diagonal elements of the matrix G,, i.e. (GJii, 
the asymptotic formulae of Hil)(kr) N - i (2 /77)  ( l / k r )  (for kr --f 0 )  was used. 
Similarly, the asymptotic formula of Hhl)(kr) N 1 +i (2 /n )  (log i k r  + y )  for kr -+ 0 
(where? = 0.577215.. . calledEuler'sconstant) wasused for the diagonalelements 
of matrix G .  

The vector P in (13b) involves the unknown value of af2/an at  the harbour 
entrance as well as the value of af2/an at  the solid boundary (these latter values 
are zero). Thus, the vector P can be represented as follows: 

(14) 
P 

j=1 
P = C SijCj = U,C, for j = 1 ,2  ,..., p ,  i = 1 ,2  ,..., N ,  

where p is the total number of segments into which the harbour entrance is 
divided,thematrixU,isdefinedasU,= Sij= Ofori + j , l f o r i = j ( i =  l , Z ,  ..., N ,  
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and j = 1,2,  . . . ,p), and the vector C represents the p unknown values of af,/an 
at  the harbour entrance. 

Substituting (14) into (12) and rearranging, one obtains 

X = (&G,+I)-l (+iGUm) C = M C ,  (15) 

where I is the identity matrix, (&G, + I)-l represents the inverse of the matrix 
(@G, + I ) .  The matrix M = (&G, + I)-l (&Gum) is a AT x p matrix and can be 
computed directly. 

Equation (15) shows that the function f2 (x i )  on the boundary can be expressed 
as a function of the unknown value of af2/an at the entrance, i.e. 

where i = 1,2,  . .., N .  Equation (16) can also be interpreted as the contribution 
to the value of f, on the harbour boundary from the superposition of the effect 
of p small harbour openings. 

In  order to evaluate the unknowns, Cl, C,, ..., Cp in (16), the function fl in 
region I at  the harbour entrance must be expressed as a function of the same 
normal derivatives, C,, C,, . . . , C,. By matching these wave functions fl and f, 
at the harbour entrance, i.e. equating water surface amplitudes at the entrance, 
the value of C,, C,, . . , , C, can be determined and the complete solution to the 
response problem can be obtained. 

(2) Function fl outside the harbour (region I ) .  Because the present analytical 
treatment is linear the function f, in region I can be expressed as 

where fi represents an incident wave function, f ,  represents a reflected wave 
function considered to occur as if the harbour entrance were closed, and f 3  
(termed radiated wave function) represents a correction to f ,  due to the presence 
of the harbour. It should be noted that (17) implies that the wave amplitude in 
region I, ql = A,flexp (-id), is equivalent to rl = A,(fi+f,+f,)exp (-id). 

The incident wave function, fi, can be specified in an arbitrary fashion; for 
example, a periodic incident wave with the wave ray at  an angle a to the x axis 
(the coastline in figure 2) can be represented as 

f,(x,y) = exp [ik(zcosa+ysina)]. 

The reflected wave function f ,  can be represented by f,.(x, y )  = f i (x ,  -y). For 
the case of a periodic incident wave with the wave ray perpendicular to the 
coastline (a = go"), the function f,(x, y) can be represented by gexp (ilcy); the 
factor 4 is chosen for convenience. (This is the case which was treated experi- 
mentally in this study and therefore the following discussion will be concerned 
with periodic waves normally incident to the coastline.) 

The function fl in (17) must satisfy the Helmholtz equation in region I (equa- 
tion ( 5 ) )  and the following boundary conditions: (i) 8fl/an = 0 on boundary A? 
and BG' (as shown in figure 2). (ii) afl/an = - af,/an on boundary A z  (harbour 
entrance), and (iii) lim fl = fi + f,, and the radiation condition (where r2 = x2 + y2). 

TI+ co 



382 J -  J .  Lee 

As mentioned earlier the function f, is known once the function fi is specified. 
In  order to complete the evaluation of the functionf, the main problem is to 
evaluate the function f,. The boundary condition (ii) just mentioned can be 
replaced by af3/an = - af,/an at the harbour entrance, because in reference to 
figure 2, a(fi+fr)/an = a(fi+f,)/ay and this derivative is equal to zero on the 
boundary CABC‘. Therefore, the functionf, in region I can be formulated as: 

w 3  a73 - + + + k z f ,  = 0) 
ax2 ay 

with the following boundary conditions: 
(i) af,/an = 0 on boundary A C  and BC’, 
(ii) af,/an = - af,/an on boundary A x  (harbour entrance), and 
(iii) lim f3 = 0 and the radiation condition (where r2 = x2+y2). 

By using Weber’s formula as was done in obtaining (8) the function f 3  can 
ra+m 

be exmessed as 

where x0 is the source point (xo, 0 )  along the x axis, x is the field point (x, y) in 
region I, and r = [ ( X - X ~ ) ~ +  y2]*. The fundamental solution Hf’(kr)  is necessary 
in order to satisfy the radiation condition (see Lee 1969). If x approaches the 
x axis at the point (xi, 0)  one obtains (20) which is similar to (10). 

a a 
f3(Xi, 0) = - +i 1 [ f 3 ( % 0 )  O )  an (kr )  an ( f 3 ( x 0 ,  O))]  ds(xO) O ) .  

The term a[Hp(kr)]/an inside the integral is equal to - kH$]-’(kr) &/an; however, 
because the points xi(x,, 0) and xo(xo, 0)  are all on the z axis, &/an equals zero. 
Also, the term af3(xo, O)/an is equal to zero except at the harbour entrance. Thus, 
(20) can be simplified to: 

where xi, xj are the mid-points of the ith and j t h  segments of the harbour en- 
trance respectively, Asj is the length of thejth segment of the harbour entrance, 
the term Cj in (21) is the value of afi/an at the mid-point of the j th  entrance 
segment, andp is, as before, the total number of segments into which the entrance 
is divided. 

By substituting (21) into (17) the functionf, at  the harbour entrance can be 
represented as: 

P 
fi(xi)= I+(-$;) HtjCi ( for i=  1 , 2  ,...,p). (22) 

3=1 

The first term on the right-hand side of (22) represents the incident plus re- 
flected wave if the entrance is closed and for convenience it is chosen as unity. 
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The second term is rewritten from (21) representing the contribution of the 
function f 3, where 

and Hii = [1+i(2/m)(log(~kAsi)-0.42278)]Asi for i = 1,2,  . . . ,p .  

(3) Matching solution for each region at the harbour entrance. In order to solve 
for the unknown value of af,/an at the harbour entrance, Cj, shown in (16) and 
(22), the condition that the water surface must be continuous at  the entrance 
is used. This matching procedure is done in the following manner. 

Take the first p equations from (16) for the value offz at  the harbour entrance, 

Hij = Hf’(kr, j )Asj  for i,j = 1,2,  ..., p ;  i +j, 

i.e. 

in which the index i = 1,2, . . . ,p .  (Note that the matrix Mp in (23) is a p x p 
matrix obtained from the first p rows of the matrix M.)  

Equating (22) to (23), i.e. fl(xi) = f2 (x i ) ,  for i = 1,2,  . . . , p ,  the following matrix 

(24a) 
equation is obtained: 

c = (M,++-iB)-l.l, P4b) 

M, C = 1 - i i H C ,  

where (M, + &iH)-l is the inverse of the matrix (M, + + i H ) ,  and 1 is the vector 
with each p element equal to unity. 

With the value of afz/an at the harbour entrance, i.e. Cj for j = 1,2,  ...,p, 
determined from this matching procedure the value of fz(xi) at the boundary 
can now be calculated from ( l6) ,  and the value of fz(x) at any position x inside 
the harbour can be determined from the following discrete form of (8): 

f,(xj) - kHil)(kr) - Asj- 11 Hhl)(kr) CjAsj), 

where xi is at  the mid-point of j t h  boundary segment, and r = Ix - xjl. 
In  order to better describe the response of a harbour to incident waves a 

parameter called the ‘amplification factor ’ is defined. This is the ratio of the 
wave amplitude at  any position (x, y )  inside the harbour to the sum of the in- 
cident and the reflected wave amplitude at  the coastline (with the harbour en- 
trance closed) 

P 
f2(x) = - (25) K1 [ an I j = 1  

Since the functionf,(x, y) is a complex number the absolute value is taken when 
computing the wave amplitude. 

With the function f 2 ( x ,  y) determined, the calculation of velocity potential 
@(x, y, z; t )  for the region inside the harbour is now complete (see (7)) and other 
quantities of interest such as the water particle velocities can be determined 
from this. 

2.2. Circular and rectangular harbour theories 

The theory developed in 9 2.1 can be used for harbours of any shape. However, 
if the harbour is a special shape, such as circular or rectangular, the solution of 
the Helmholtz equation in region I1 can be easily obtained using the method 
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of separation of variables. For the open-sea (region I) the solution developed 
in fj 2.1 can be applied again. By matching the solution in both regions at the 
harbour entrance (for circular harbours, the arc and the chord at  the entrance 
are assumed to be equivalent) the complete solution of the wave-induced 
oscillations in circular or rectangular harbours can be obtained. Since the 
analytic method for these special cases is quite straight-forward it will not 
be presented here, the interested reader is referred to Lee (1969) for detailed 
derivations. In  SS4.1 and 4.2, theoretical solutions obtained by using these 
special theories for two circular harbours and a rectangular harbour will be 
compared with solutions given by the general theory and with experimental 
data. 

3. Experimental apparatus 
A series of experiments was conducted in the laboratory in a wave basin 

1 ft. gin. deep, 15ft. 5in. wide, and 31 ft. 5 in. long. The vertical walls ofthe basin 
were constructed of fin. marine plywood with the floor constructed of 1 in. 
marine plywood. The bottom of the wave basin was treated with a layer of 
polyester resin approximately $in. thick and was horizontal to within at  least 

0-02 in. 
The wave generator was a pendulum type 11 ft. 8 in. long, 2 ft. high located at  

one end of the basin and it was designed to operate either as a paddle- or piston- 
type wave generator; its detailed description and design consideration were given 
by Raichlen (1965). When operating as a paddle-type generator for short period 
waves the imaginary hinge point was located close to the bottom of the generating 
plate. Wave periods ranging from 0.34 sec to 3-8 sec and a maximum stroke of 
12 in. can be obtained with this system. 

The wave period was determined by measuring, with a photo-cell circuit and 
an electronic counter, the rotational speed of a perforated disk attached to one 
cccentric of the wave-generating mechanism. Wave amplitudes were measured 
electronically using resistance wave gauges and an oscillograph recordcr. The 
wave gauge was calibrated before and after an experiment (approximately one 
hour apart). A calibration curve representing an average over the duration of 
an experiment was used in reducing the experimental data. 

The theories developed in previous sections treat the case of a harbour con- 
nected to the open-sea which leads to the existence of the ‘radiation condition’, 
i.e. the radiated waves which emanate from the harbour entrance decay t o  zero 
at an infinite distance from the harbour. However, in the laboratory, experiments 
must be conducted in a wave basin of finite size; thus, the radiated waves from 
the harbour will be reflected from the wave paddle and the sidewalls of the basin 
unless effective energy dissipators are provided. Indeed it was shown by Raichlen 
& Ippen (1965) that the response of a rectangular harbour in a highly reflective 
basin is radically different from that of a similar harbour connected to the open- 
sea. In  order to simulate the open-sea in the laboratory basin, two types of 
wave energy dissipators were employed in the present experiments: a wave filter 
placed in front of the wave generator, and wave absorbers located along the 
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side-walls of the wave basin. The wave filter was 11 ft. 9 in. long, 1 ft. 4 in. high and 
5 ft. thick in the direction of wave propagation and was constructed of 70 sheets 
of galvanized iron wire screen (each sheet spaced 0.8 in. apart). The wire diameter 
of the screens was 0.011 in. with 18 wires per inch in one direction and 14 wires 
per inch in the other. The wave absorbers, placed along the side-walls of the 
basin were each 1 ft. 6in. high, 1 ft. loin. thick, and 30ft. long and consisted of 
50 layers (spaced $in. between layers) of the same galvanized iron screen as used 
in the wave filter. A typical wave had its amplitude reduced by about 80 % as 
the result of passing through the wave absorber (or filter), reflecting from the 
wall, and passing through the wave absorber again. (In order t o  control corrosion 
of the galvanized wire screens sodium dichromate (Na,Cr,O,) was added to the 
water in the basin.) 

Four different harbours with constant depth were investigated experimentally: 
a rectangular harbour, a circular harbour with a 10" opening, a circular harbour 
with a 60" opening, and an example of a complicated-shaped harbour (a model of 
the East and West Basins of the Long Beach Harbour, California). The harbour 
models were designed so that each would fit into an opening at  the centre of a 
false wall simulating a perfectly reflecting coastline which was installed 27 ft. 6 in. 
from and parallel to the wave paddle. 

4. Presentation and discussion of results 
4.1. Circular harbour with a 10" and a 60" opening 

In  this section the theoretical results obtained by using the theories developed 
in §§  2.1 and 2.2 are compared to the experimental results for harbours with a 
10" and a 60" opening. The results will be presented as: (i) the variation of the 
amplification factor at  a fixed position inside the harbour as a function of incident 
wave-number, (ii) the variation of the wave amplitude inside the harbour for 
some resonant modes. 

(1) Response of harbour to incident waves. The response of a harbour is defined, 
for this study, as the variation of the amplification factor, R, with the wave- 
number parameter ka (wherein R is defined in (26), k is the wave-number and a 
is a characteristic planform dimension of the harbour, in this case a is t h e  radius 
of the circular harbour). Response curves at  an arbitrarily chosenpoint (r = 0*7ft., 
6' = 45") inside a circular harbour with a 10" opening are presented in figure 3. 
In  the figure the solid line represents the theoretical curve computed from the 
theory for an arbitrary shape harbour (§ 2.1); the theory for the circular harbour 
($2.2) is shown with dashed lines. The experiments were conducted using a 
circular harbour of 1.5ft. diameter with the depth of water constant and equal 
to 1 ft. in both the harbour and the 'open-sea'. The experimental amplification 
factor was obtained by dividing the wave amplitude a t  the point investigated 
inside the harbour ( r  = 0-7ft., 6, = 45") by the average wave amplitude of the 
standing wave system a t  the harbour entrance (when the entrance is closed). 

For a circular harbour with a 10" opening the arc and the chord at the harbour 
entrance are nearly the same; therefore, the circular harbour theory ( 3  2.2) should 
give accurate results when applied to this harbour. In using the circular harbour 

2 5  F L M  45 
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theory the averages (across the entrance) of the wave functions, f2 and fit and 
their normal derivatives af2/an and af&, were matched at  the harbour entrance. 
In using the arbitrary-shape harbour theory, the boundary of the circular harbour 
including the entrance was divided into 36 segments with each segment having 
a 10" central angle. Since the harbour entrance was represented by one of these 
segments only one unknown complex value of afi/an needs to be evaluated by the 
matching procedure described in $2.1. Calculations were also made with the 
arbitrary-shape harbour theory when the harbour entrance was divided into 

I I I I 

6 

1 

O O  1 2 3 
ka 

4 

FIGURE 3. Response curve a t  r = 0.7 ft., 0 = 45' of the circular harbour with a 10" opening. 
-, arbitrary-shape harbour theory; - - - , circular harbour theory; 0, experiment 
(a  = 0.75ft.). 

five segments, i.e. each entrance segment includes 2" central angle. These results 
(not presented here) agree within 2 % of those presented in figure 3 which were 
obtained by considering one entrance segment. No calculations were made with 
the circular harbour theory using more than one entrance segment. 

In  figure 3 the experimental data and the theoretical results agree well. Since 
the energy dissipation due to viscous effects has not been considered in the 
theories, the theoretical values of the amplification factor near resonance are, 
as expected, larger than the experimental values. There are four distinct modes 
of resonant oscillations in the range of ka that are presented in figure 3; the value 
of kafor these four are 0-35, 1.988, 3.18, and 3.87. (It is noted that except for the 
first mode (ka = 0.35) which does not exist in the completely-closed basin, each 
mode corresponds to a mode of free oscillation in closed circular basins which 
occur at  ka = 1.84, 3.05, and 3.83.) 

A similar response curve for the circular harbour with a 60" opening (for 
position corresponding to those shown in figure 3) is presented in figure 4. As 



Wave-induced oscillations in harbours of arbitrary geometry 387 

before, theoretical curves obtained from each of the theories are shown. In  using 
the theory for an arbitrary-shape harbour, the boundary of the harbour (in- 
cluding the entrance) was divided into 36 segments, and for this case the entrance 
was represented by six of these boundary segments. Therefore, six complex 
constants of af,/an at the harbour entrance, i.e. Cj for j = 1,2,  .. . , 6 ,  were de- 
termined by the matching procedure. When applying the circular harbour theory, 
the average value of af,lan across the entrance was determined by the matching 
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FIGURE 4. Response curve at r = 0.7ft., 6' = 45" of the circular harbour with a 60" opening. 
---, arbitrary-shape harbour theory; - - - , circular harbour theory; 0, experiment 
(a  = 0.75ft.). 

procedure as for the case of a 10" opening. The theoretical results presented in 
figure 4 also shows good agreement with the experimental data. The value of ka 
for the four modes of resonant oscillation (corresponding to those for the case of 
a 10" opening) are 0.46, 2.15, 3.38, and 3-96. 

By comparing figure 3 with figure 4 the effect of the size of the harbour opening 
on the amplification of waves inside the harbour can be observed. It is obvious 
from these figures that the maxima which appeared in figure 3 for the harbour 
with a 10' opening are replaced by peaks of smaller amplification factors and 
larger band widths for the harbour with a 60" opening. This effect was called the 
'harbour paradox ' by Miles & Munk (1 961). In addition, it is seen that for the 60" 
opening, the values of ka of the modes of resonant oscillation are larger than the 
values of ha for the corresponding modes for the harbour with a 10" opening 
indicating that the value of ka at resonance approaches the value for a closed 
basin as the entrance width decreases. It is also seen that the theoretical results 
agree with the experimental data better for the harbour with the larger opening. 

25-2 
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This may imply that the effect of viscous dissipation, which has not been con- 
sidered in the theories, is most important for the harbour with a smaller opening. 

(2) Variation of wave amplitude inside the harbour for some resonant modes. 
The results which deal with the response curves have demonstrated that the 
two theories agree well with the experimental data. Both theories are tested 
further by comparing the theoretical results with the experimental data for the 
wave-amplitude distribution inside the harbour for certain values of ka. 

- 1.0 
0 30 60 90 120 150 180 

360 330 300 270 240 210 180 

8 (degrees) 

FIGURE 5. Wave-amplitude distribution inside tho circular harbour with a 10" opening 
for ka = 1.988. ~ , arbitrary-shape harbour theory; - - - , circular harbour thoory; 0, 
experiment (0 < 0 < 180"); 0,  experiment (180' < 0 < 360"). 

Figure 5 shows the wave-amplitude distribution along two circular paths with 
r = 0.7 ft. (./a = 0.935) andr  = 0.2 ft. (./a = 0.267) for rEa = 1.988 for the harbour 
with a 10" opening. The ordinate in figure 5 is the relative wave amplitude 
normalized with respect to the wave amplitude a t  the position of r = 0.7ft, 
8 = 180" which is the maximum amplitude among the points measured. This 
value of ka corresponds to the second maximum in the response curve shown in 
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figure 3. It is seen that the two theories agree well with the experiments at the 
locations where measurements were made. Pigure 5 shows, for r = 0.7ft. a 
region of negative water surface displacements (negative wave amplitudes) for 
0" 6 6 < 97" with positive displacements for 97" < 6 6 180". Similarly, for 
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FIGURE 6. Wave-amplitude distribution inside the circular harbour with a 60" opening 
for ka = 2.153. - , arbitrary-shape harbour theory; - - -, circular harbour theory; 0, 
experiment (0 < 0 < 180"); 0,  experiment (180" < 0 < 360"). 

r = 0.2ft. two regions are seen with opposite phase, i.e. 0" 6 8 < 103" with 
negative displacements and 103" < 8 < 180" with positive displacements. 

Figure 6 shows the wave-amplitude distribution along radii r = 0.7ft. and 
r = 0-2ft. at ka = 2.153 for the harbour with a 60" opening. This value of ka is 
the same as for the second maximum in the response curve presented in figure 4. 
It can be seen that the general shape of the water surface (wave-amplitude dis- 
tribution) is similar to the one shown in figure 5 for the case of a 10' opening. For 
this case the intersections of the nodal line with the chosen circular paths occur 
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at larger values of 0:  105" for r = 0.7 ft. and 116" for r = 0.2 ft. This indicates that 
the nodal line for this mode of oscillation is located closer to the backwall region 
than for the case of a 10" opening. 

The response curves and the amplitude distribution curve presented have 
demonstrated the agreement between the theories and experiments. A question- 
able element in the circular harbour theory ($2.2) is in the small entrance 
approximation where the arc and the chord at the entrance are considered to be 
equivalent. The results have shown that this approximation still applies well for 
the case of a 60" opening; thus, it appears that for this type of solution the small 
entrance approximation can be applied a t  least up to a 60" opening. It is fair to 
say that the good agreement between the two theories, as well as between the 
experimental data and these theories, confirms the applicability of the arbitrary- 
shape harbour theory to the first extreme case: a curved boundary with a tangent 
continuously changing direction. The application of the arbitrary-shape harbour 
theory for the second extreme case, a harbour composed of straight-lined 
boundaries will be presented and discussed in the next section. 

4.2. Rectangular harbour 

The response of a fully-open rectangular harbour (2tin. wide, 129in. long) 
to periodic incident waves is presented in figure 7. The abscissa is the parameter kl 
(where 1 is the length of the harbour); the ordinate is the amplification factor, R, 
defined as the wave amplitude a t  the centre of the backwall of the harbour (point 
A )  divided by the average standing wave amplitude at the harbour entrance 
when the entrance is closed. Three theoretical curves are shown (the arbitrary- 
shape harbour theory in solid lines ( §  2. l), the rectangular harbour theory in long 
dashed lines ($2.2), the theory of Ippen & Goda (1963) in short-dashed lines). 
The experimental data obtained from the present study (with the water depth 
equal to 0.844ft.) are denoted by open circles while the experimental data of 
Ippen & Goda (1963) are shown as solid circles. 

In using the arbitrary-shape harbour theory (8 2.1) the boundary of the harbour 
is divided into 47 segments ( N  = 47) of unequal length including three segments 
at  the harbour entrance. For the rectangular harbour theory only the averaged 
value of afi/an across the harbour entrance is matched. Thus, the only difference 
between the theory of Ippen & Goda (1963) and the present rectangular harbour 
theory lies on the evaluation of the functionf,. The former used the Fourier 
transformation method to evaluate the function fa while the present theory 
applies Weber's solution of the two-dimensional Helmholtz equation. From 
figure 7 it is seen that any differences between these two appears to be quite 
small. 

From figure 7 it is seen that the three theoretical curves all agree fairly well 
with the experimental results and that the present experimental data agree 
better with the theoretical curves than do the experimental data. of Ippen & 
Goda (1963), expecially in the vicinity of resonance. This is probably because 
the wave basin for present experiments is both wider and longer than the one 
used by Ippen & Goda, hence the incident wave is more nearly two-dimensional; 
also the present energy dissipators are more efficient than those used by Ippen & 
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Goda and therefore the ‘ open-sea ’ condition is simulated more satisfactorily. 
This is supported by the fact that the data of Ippen & Goda show fluctuations 
in the response curve especially in the region 1.10 < kl < 1-70 indicating that 
the ‘open-sea’ condition is not properly simulated in this frequency range where 
the wavelength is large and the wave energy dissipators are correspondingly 
less efficient than for shorter wavelengths. Such fluctuations do not appear in the 
present experimental data. 

The agreement between the theories and the experimental data as shown in 
figure 7 has demonstrated that the arbitrary-shape harbour theory can also be 
applied successfully t o  a harbour with straight sides and sharp interior corners. 
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FIGURE 7. Response curve a t  the centre of the backwall (point A )  of a fully-open rectangular 
harbour. -, arbitrary-shape harbour theory; - - , rectangular harbour theory; - - - -, 
theory of Ippen & Goda (1963); 0, present experiment; 0,  experiment by Ippen & Goda 
(1963). 

4.3. An example of a harbour with complicated shape 

In  order to test the arbitrary-shape harbour theory further, a harbour of com- 
plicated shape was studied both theoretically and experimentally. In  planform 
this harbour model is slightly modified from the existing harbour of the East 
and West Basins of the Long Beach Harbour (with a horizontal scale 1 to 4700). 
The water depth of the prototype harbour is fairly uniform with an average 
depth of 40ft.; the water depth of the harbour model is l f t .  (A sketch of the 
harbour shape is included in figure 8.) 

A response curve at an arbitrarily-chosen location inside the harbour (desig- 
nated as point A )  is presented in figure 8. If the right-hand corner of the harbour 
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opening is taken as the origin of co-ordinates (z axis lies on the coastline) then 
in model dimensions the co-ordinates of point A can be specified as: A (1.42 ft., 
- 0.96 ft.), where the first number inside the bracket is the 2 co-ordinate and the 
second number is the y co-ordinate. As before, the abscissa in the response curve 
is the parameter ka (where again Ic is the wave-number and a is the characteristic 
length equal to 1.44ft. for this particular harbour model); the ordinate is the 
amplification factor R which is defined as the wave amplitude at  point A divided 
by the average standing wave amplitude at  the harbour entrance when the 
harbour is closed. 

I I 1 I I 1 I 
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FIGWE 8. Response curve at  point A of the Long Beach Harbour model. 
-, arbitrary-shape harbour theory; 0, experiment. 

In applying the arbitrary-shape harbour theory the boundary of the harbour 
is divided into 75 unequal straight-line segments including two segments for the 
entrance. It is seen that the theoretical results agree well with the experimental 
data and show that the response of this harbour to periodic waves is much more 
complicated than the response curves for either a circular or a rectangular 
harbour. From the response curve it is also seen that while the theory has pre- 
dicted the frequency of every resonant mode of oscillation correctly, the theo- 
retical amplification factor at resonance is slightly larger than the measured 
value especially for the resonant modes a t  larger values of ka. It can be imagined 
that in using the same number of segments for the boundary of the harbour a t  
all wave periods the theoretical results for a smaller value of ka are more accurate 
than the results which correspond to large ka. (Since for the former case the 
ratio of the length of the boundary segments to the wavelength is smaller than 
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that of the latter case.) This may contribute to the fact that a better agreement, 
between the theory and the experiments, at smaller values of ka is observed. 
These results have demonstrated again the applicability of the arbitrary-shape 
harbour theory to a harbour of complicated planform. 

It was mentioned in 3 2.1 that in using the theory for an arbitrary-shape 
harbour, the boundary of the harbour must be divided into a sufficiently large 
number of segments. ‘Sufficient’ implies that the results obtained using this 
approximate theory must agree with the exact solution within an allowable 
limit. For practical purposes, the following considerations must be given to the 
relative size of each segment: when the boundary is divided and replaced by 
straight-line segments these must be a good approximation to the actual 
boundary, and the length of each straight-line segment, As, must be small com- 
pared with the wavelength, L. This second criterion can be represented best by 
the parameter kAs (where k is the wave-number). Among the four harbour 
models used in this study the largest value of kAs was 0.69. Judging by the good 
agreement realized between the present theory and the experimental results 
for the three different boundary configurations, it is concluded that the boundary 
of the harbour models were divided into segments which were sufficiently small; 
this criterion corresponds to the ratio AslL z, +. Therefore, a conservative state- 
ment of the criterion for segment length can be stated as: the harbour perimeter 
should be divided into a number of ‘AT’ straight-line segments such that the 
ratio of the length of the largest segment to the smallest wavelength to be con- 
sidered is less than about one-tenth. 
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